abo_giftabo_onlineabo_printabo_studentabo_testangle_leftangle_rightangle_right_filledarrow_big_downarrow_big_down_filledarrow_big_leftarrow_big_left_filledarrow_big_rightarrow_big_right_filledarrow_big_uparrow_big_up_filledarrow_dropdown_downarrow_dropdown_uparrow_small_leftarrow_small_left_filledarrow_small_rightarrow_small_right_filledarrow_stage_leftarrow_stage_left_filledarrow_stage_rightarrow_stage_right_filledcaret_downcaret_upcloseclose_thinclose_thin_filledcontactdownload_thickdownload_thick_filleddownload_thindownload_thin_filledebookeditelement_headlineelement_labelelement_relatedcontentlockmailminuspagepage_filledpagespages_filledphoneplusprintprint_filledquotationmarks_leftquotationmarks_rightsearchsendshareshare_filledshoppingcart_bigshoppingcart_big_filledshoppingcart_headershoppingcart_smallshoppingcart_small_filledsocial_facebooksocial_linkedinsocial_pinterest social_xsocial_xingsocial_youtubesocial_twitteruser_biguser_small

Journal articles

Reset filter
  • Author(s)

  • Language of Publication

  • Published

  • Category

Journal

  • Select allDe-select all
Author(s)TitleJournalIssuePageCategory
Walraven, Joost C.; Bigaj-van Vliet, AgnieszkaThe 2010 fib Model Code for Structural Concrete: a new approach to structural engineeringStructural Concrete3/2011139-147Articles

Abstract

The fib Model Code is a recommendation for the design of reinforced and prestressed concrete which is intended to be a guiding document for future codes. Model Codes have been published before, in 1978 and 1990. The draft for fib Model Code 2010 was published in May 2010. The most important new element in this Model Code is “Time” in the sense of service life. Additionally, the Model Code contains an extended state-of-theart chapter on the structural materials concrete and steel but regards non-metallic reinforcement and fibres as reinforcement as well. Many loading conditions are considered, ranging from static loading to non-static loading, considering earthquake, fatigue and impact/explosion. Five methods are offered to verify structural safety. Attention is given to verification of limit states associated with durability, robustness and sustainability. Finally, verification assisted by numerical methods and by testing is considered. Other elements that are links in the chain of life cycle design are construction and conservation. In the part on conservation the conservation strategy is treated in combination with conservation management, condition survey and assessment, and evaluation and decision-making.

x
fib short course in Nicosia, Cyprus: Durability and retrofitting of concrete structuresStructural Concrete2/2011129-135fib-news

Abstract

• fib short course in Nicosia, Cyprus: Durability and retrofitting of concrete structures
• 2011 Achievement Award for Young Engineers - Results
• Commission update: fib Commission 10, Construction
• 9th Symposium on HPC: change of venue
• Finalization of fib Model Code
• Pier Luigi Nervi workshop
• Honor to Prof. Ajdukiewicz
• HiPerMat symposium 2012
• Stockholm symposium 2012
• Short notes
• Congresses and symposia
• Acknowledgement

x
Ueda, TamonInternational code harmonization: the role of the Asian Concrete Model CodeStructural Concrete1/201147-54Articles

Abstract

Many national codes in Asia are heavily influenced by those from either Europe or the USA. The climatic, technological and economic conditions together with the material properties in Asia are, however, quite different from those in Europe and the USA, and even different among Asian countries. Thus, many Asian countries need their own national codes with suitable concepts and technologies. At the same time, many construction projects in Asia are carried out in multi-national environments in which various national codes are applied, meaning that international code harmonization is necessary. In order to work for the global issue, such as the construction of a sustainable world, Asia, as the largest economic zone in the 21st century, should take on a leading role. For this purpose, international code harmonization with the new direction of life cycle management (LCM) would provide an efficient way.
The International Committee on Concrete Model Code for Asia (ICCMC) was established in 1994 as the first international body in Asia. The ICCMC issued the Asian Concrete Model Code (ACMC) in 2001, the first international structural code in Asia. The ACMC is an umbrella code with a performance-based concept and a multi-level document structure, which makes it suitable for the considerable diversity in Asia. It is also the first international code covering maintenance and repair, which makes the ACMC ready to adopt the LCM concept. The ACMC has been a model for various national codes. The main features of the ACMC, i.e. the performance-based concept, durability design concept, seismic design concept and the inclusion of maintenance/repair, are shared with JSCE Standard Specifications in Japan. The ICCMC has been working together with ISO/TC71 towards international code harmonization.

x